Problem 1.63

(a) Find the divergence of the function

$$
\mathbf{v}=\frac{\hat{\mathbf{r}}}{r} .
$$

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in Eq. 1.85. Is there a delta function at the origin, as there was for $\hat{\mathbf{r}} / r^{2}$? What is the general formula for the divergence of $r^{n} \hat{\mathbf{r}}$? [Answer: $\nabla \cdot\left(r^{n} \hat{\mathbf{r}}\right)=(n+2) r^{n-1}$, unless $n=-2$, in which case it is $4 \pi \delta^{3}(\mathbf{r})$; for $n<-2$, the divergence is ill defined at the origin.]
(b) Find the curl of $r^{n} \hat{\mathbf{r}}$. Test your conclusion using Prob. 1.61b. [Answer: $\nabla \times\left(r^{n} \hat{\mathbf{r}}\right)=\mathbf{0}$.]

Solution

In spherical coordinates (r, ϕ, θ), where θ is the angle from the polar axis, the divergence of a vector function is

$$
\nabla \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(v_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} .
$$

The divergence theorem (or Gauss's theorem) relates the volume integral of $\nabla \cdot \mathbf{v}$ to a closed surface integral.

$$
\iiint_{D} \nabla \cdot \mathbf{v} d V=\oiint_{\text {bdy } D} \mathbf{v} \cdot d \mathbf{S}
$$

Part (a)

If $\mathbf{v}=(1 / r) \hat{\mathbf{r}}$ and D represents the sphere of radius R centered at the origin, then the left side evaluates to

$$
\begin{aligned}
\iiint_{D} \nabla \cdot \mathbf{v} d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{1}{r}\right)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{1}{r^{2}}(1)\right] r^{2} \sin \theta d r d \phi d \theta \\
& =\left(\int_{0}^{\pi} \sin \theta d \theta\right)\left(\int_{0}^{2 \pi} d \phi\right)\left(\int_{0}^{R} d r\right) \\
& =(2)(2 \pi)(R)=4 \pi R
\end{aligned}
$$

and the right side evaluates to

$$
\begin{aligned}
\oiint_{\text {bdy } D} \mathbf{v} \cdot d \mathbf{S} & =\left.\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{r} \hat{\mathbf{r}}\right)\right|_{r=R} \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{R} \hat{\mathbf{r}}\right) \cdot\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
& =R \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \phi d \theta \\
& =4 \pi R
\end{aligned}
$$

Since both sides of the divergence theorem are the same, there's no need for a delta function (apparently, \mathbf{v} doesn't blow up fast enough as $r \rightarrow 0$). The divergence of $\hat{\mathbf{r}} / r$ is the quantity in square brackets.

$$
\nabla \cdot \frac{\hat{\mathbf{r}}}{r}=\frac{1}{r^{2}}
$$

If $\mathbf{v}=r^{n} \hat{\mathbf{r}}$ and $n<-2$, then the volume integal blows up because the integrand is singular at $r=0$. See part (b) of Problem 1.39 for $n=2$. If $\mathbf{v}=r^{n} \hat{\mathbf{r}}$ and $n>-2$, then

$$
\begin{aligned}
\nabla \cdot \mathbf{v} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot r^{n}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(0 \cdot \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}(0) \\
& =\frac{1}{r^{2}} \frac{d}{d r}\left(r^{n+2}\right) \\
& =\frac{1}{r^{2}}(n+2) r^{n+1} \\
& =(n+2) r^{n-1} .
\end{aligned}
$$

Part (b)

In spherical coordinates (r, ϕ, θ), where θ is the angle from the polar axis, the curl of a vector function is

$$
\nabla \times \mathbf{v}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(v_{\phi} \sin \theta\right)-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{\mathbf{r}}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r v_{\phi}\right)\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\phi}} .
$$

If $\mathbf{v}=r^{n} \hat{\mathbf{r}}$, then

$$
\begin{aligned}
\nabla \times \mathbf{v} & =\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}(0 \cdot \sin \theta)-\frac{\partial}{\partial \phi}(0)\right] \hat{\mathbf{r}}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\left(r^{n}\right)-\frac{\partial}{\partial r}(r \cdot 0)\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial}{\partial r}(r \cdot 0)-\frac{\partial}{\partial \theta}\left(r^{n}\right)\right] \hat{\boldsymbol{\phi}} \\
& =\frac{1}{r \sin \theta}[(0)-(0)] \hat{\mathbf{r}}+\frac{1}{r}\left[\frac{1}{\sin \theta}(0)-(0)\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}[(0)-(0)] \hat{\boldsymbol{\phi}} \\
& =\mathbf{0} .
\end{aligned}
$$

According to part (b) of Problem 1.61,

$$
\iiint_{D}(\nabla \times \mathbf{v}) d V=-\oiint_{\text {bdy } D} \mathbf{v} \times d \mathbf{S} .
$$

Let D be the sphere of radius R centered at the origin. The outward normal unit vector is then $\hat{\mathbf{r}}$.

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left[\nabla \times\left(r^{n} \hat{\mathbf{r}}\right)\right]\left(r^{2} \sin \theta d r d \phi d \theta\right) & =-\left.\int_{0}^{\pi} \int_{0}^{2 \pi}\left(r^{n} \hat{\mathbf{r}}\right)\right|_{r=R} \times\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}(\mathbf{0})\left(r^{2} \sin \theta d r d \phi d \theta\right) & =-\int_{0}^{\pi} \int_{0}^{2 \pi}\left(R^{n} \hat{\mathbf{r}}\right) \times\left(\hat{\mathbf{r}} R^{2} \sin \theta d \phi d \theta\right) \\
\mathbf{0} & =-\int_{0}^{\pi} \int_{0}^{2 \pi}(\mathbf{0}) d \phi d \theta \\
\mathbf{0} & =\mathbf{0}
\end{aligned}
$$

